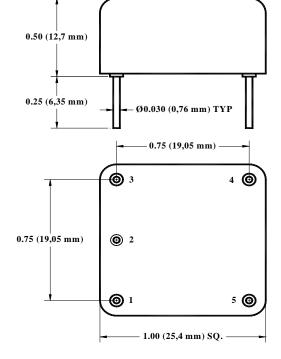
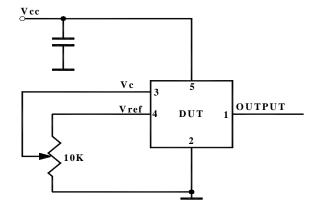
OG-X8PXXXXXX-X

Rev. E


Extremely Low Power Consumption, Fast Warm-up, SC-cut, Precision, Very Low Phase Noise OCXO in 1"x1" Hermetically sealed Through Hole Package


Features

- **SC-cut crystal**
- **Extremely Low Power Consumption (125 mW)**
- Fast Warm-up Time (to 30 s)
- High Stability (up to $\pm 1x10^{-8}$) Low Aging $(5x10^{-10}/\text{day}, 5x10^{-8}/\text{year})$
- Very Low Phase Noise(-160 dBc/Hz, TYP, floor)
- Sine Wave or HCMOS/TTL output
- 8 MHz to 160 MHz Frequencies Available

Applications

- **Telecommunication Systems**
- **Data Communications**
- GPS
- Battery Powered Systems and Equipment
- Instrumentation
- COTS/Dual use

Unit

CRYSTAL OSCILLATORS

Min

-0.5

Тур

Max

5.5

Condition

OG-X8PXXXXX-X Series

Absolute Maximum Rating

Symb

Vcc

Parameter

Input Break

Rev E

Note

Down Voltage								
Storage temper.	Ts		-40		85	°C		
Control Voltage	Vc		-1		7	V		
Electrical (4)								
Frequency	F		8	10.000	160	MHz	1*	
Frequency stability	ΔF/F	vs. Temp.		±50		ppb	See chart below	
		vs. Supply		1	2	ppb/V		All parameters for 10 MHz
Aging		per day		5E-10			after 30 days	Ξ
		per year		1E-7			5E-8 available2*	.10
Allan Deviation		.1s to 10s		1E-11				for
SSB Phase Noise		1Hz		-90		dBc/Hz	3*	ers
		10 Hz		-120				net
		100 Hz		-145				ırar
		1 KHz		-153				l pa
		10 KHz		-160				[IA]
Retrace		After 30 minutes			±10	ppb		
G-sensitivity		worst direction			±1.0	ppb/G		
Input Voltage	Vcc		4.75	5.0	5.25	V	See chart below to	specify
			3.15	3.3	3.45			
Power consumption	P	steady state, 25°C		0.125	0.2	W	Standard Oper	
		steady state, -30°C		0.35			Temperature, for	
		start-up @ -30°C		0.5	1.0		Temp. 85 °C ac	
Spectral Purity		Subharmonics		-50	-45	dBc	At Higher Frequ	encies
		Spurious			-80			
	40776	Harmonics/Sine		-35	-30			
Load		Ohm//15pF (HCMOS/TTL), 50 Ohm (Sinewave)						
Warm-up time	τ	to 0.1ppm accuracy		30	45	S		
Output Waveform		3.3V HCMOS/TTL compatible or Sinewave						
Control voltage	Vc		0		Vref	V		
Pull range		from nominal F	±0.5	±1		ppm		
Deviation slope		Monotonic, posit		0.4		ppm/V		
Setability	Vc0	@25°C, Fnom.	Vref/2-1	Vref/2	Vref/2+1	V		
Environmental and Mechanical								

Soldering Conditions Electrical Connections

Vibration

Operating temp. range Mechanical Shock

Electrical confidences	
Pin Out	Pin #1 Output; Pin#2 – GND; Pin #3 – Vc; Pin #4 - Vref; Pin #5 - Vcc;

-30°C to 70°C Standard, Other options – see chart below

Notes:

Per MIL-STD-202, 30G, 11ms

260°C for 10s Max leads only

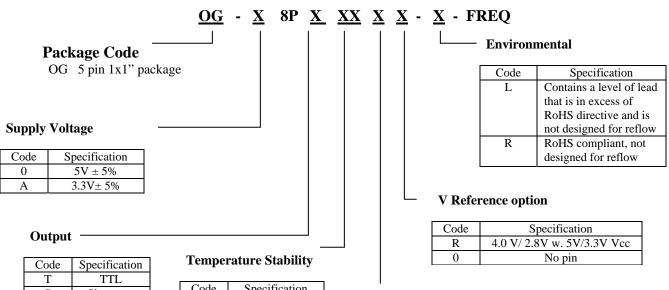
Per MIL-STD-202, 5G to 2000 Hz

357 Beloit Street, P.O. Box 457, Burlington, WI 53105-0457 U.S.A. Phone 262/763-3591 FAX 262/763-2881

Email: nelsales@nelfc.com www.nelfc.com

^{1*} Higher frequencies can be achieved either by using higher frequency crystals or by low noise analog harmonic multiplication. Both methods have advantages and drawbacks. If lowest possible phase noise on the noise floor is most important – high frequency crystal will be used. If phase noise close to the carrier and aging are more important – multiplication will be used. Please consult factory for your specific requirement.

^{2*} Aging rate is usually proportional to the operating frequency, unless higher frequency is achieved by multiplication. Keep it in mind while specifying aging.


^{3*} Phase noise deteriorates with frequencies going higher. If analog multiplication is used to achieve higher frequency the phase noise roughly follows the formula of additional 20LogN, where N is a multiplication factor across entire frequency offset range. If higher frequency is achieved by using higher frequency crystal phase noise close to the carrier deteriorates due to the lower Q of the crystal and is usually worse, compared to multiplied solution. On the noise floor, however it remains more or less the same. This design usually starts utilizing multiplication techniques in the range of 25 MHz to 35 MHz.

^{4.} All parameters, unless otherwise specified, are at nominal conditions, ie: T=25°C, Nominal Vcc & Nominal Load.

OG-X8PXXXXX-X Series

Rev. E

Creating a Part Number

Sinewave

Code	Specification
17	1x10 ⁻⁷
58	$5x10^{-8}$
28	2x10 ⁻⁸
18	1x10 ⁻⁸
YZ	Yx10 ^{-Z}

Temperature Range

Code	Specification
A	0°C to 50°C
В	0°C to 70°C
С	-20°C to 70°C
D	-40°C to 85°C
Е	-10°C to 60°C
F	-40°C to 80°C
G	-30°C to 70°C
9	Customer Specific

Not all combinations are available. Consult Factory.

Email: nelsales@nelfc.com www.nelfc.com